《倒数的认识》数学教学反思

时间:2024-07-11 16:52:22
《倒数的认识》数学教学反思

《倒数的认识》数学教学反思

身为一名优秀的人民教师,课堂教学是我们的任务之一,借助教学反思我们可以快速提升自己的教学能力,那么应当如何写教学反思呢?下面是小编为大家整理的《倒数的认识》数学教学反思,欢迎阅读,希望大家能够喜欢。

《倒数的认识》数学教学反思1

今年教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。

通过看杂志和其他教学刊物,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过比赛的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的`方法时,我有给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。

最后,大家一致认为”0“没有倒数。因为“0”不能做除数,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

《倒数的认识》数学教学反思2

倒数的认识这部分内容是在分数乘法的基础上进行教学的。学习倒数主要是为后面学习分数除法作准备的。因为一个数除以一个分数的计算方法是归结为乘这个分数的倒数。所以学好这部分内容对之后学习分数除法是至关重要的。由于我是六年级数学组第一单元的把关教师,本课又是我的单元课,所以在课前,看了不少关于这课的教学设计,觉得是五花八门,各有所长,最终根据我班学生的学习情况,设计了教学方案,取得了不错的教学效果,主要表现在以下几点:

一、特色引入,直奔主题。

在本课的引入中,我通过谈话让学生了解对比相互的反义词及位置交换,再通过让男女学生计算小黑板不同的两组乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。然后让学生对具有这样特点的两个分数起名,学生不约而同的叫它们倒数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。在强调重点时,学生发现在数学上还有像倒数这样的情况,如约数和倍数,倒数也是相互依存的。

二、让学生在碰撞中体验到成功的快乐。

著名教育家苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”而在儿童的心理,这种需求特别强烈。为了符合学生的这一心理特点,我在教学求一个数的倒数的方法上让学生以生问生答的形式进行,在我的鼓励下,学生开始是提出整数、真分数、假分数,接着想到带分数、小数,进一步想到两个特例1和0, 面对特殊的0和1这两个数时,学生们出现了小小的.“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”,“0乘任何数都得0,不可能得到1”这两个理由,拓展了我所提供给学生的知识内容,学生在深入思考中得出结论,这就是学生学习的成果。我觉得,这样做不仅增添了课堂活力,而且还让学生经历了探索的过程,解决了学生的困惑,更让学生体会到了成功的快乐。

本课我最大的收获是学生自己进行了充分的辩论,让我惊喜万分,感到十分高兴,我觉的是本课最大的收获,在学生的辩论在,连我都充满了激情。我想,在教学中需要我充分预设,放开手脚,这样定能让我的课堂焕发精彩。

《倒数的认识》数学教学反思3

“倒数的认识”是一节概念教学课,这部分内容是在学习了分数乘法的基础上进行教学的。理解倒数的意义,会求一个数的倒数是学生学习分数除法的前提。学生只有学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

一、课前的思考与预设

针对本课内容,看似简单,实质内涵非常丰富的特点,结合本班学生大多数基础薄弱的现状。认真思考了本节课中教学目标和重、难点。力争能让学生听的清楚,练的活泼,学的轻松。所以课前思考时从以下几个方面入手。

1、本课的知识点

本课的学习内容是“倒数的认识”即对倒数的认知与识别。如何能够让学生很清晰的明白倒数的意义呢?以及如何找准一个数的倒数呢?

2、本课的关键点

《小学数学新课程标准》中指出既要关注学生的学习结果,又要关注学生的学习过程。对倒数的意义教学,进行了仔细的剖析,把意义分为几个部分:“乘积是1”,“两个数”,“互为倒数”这三个部分,看起来简单,但是每个部分再仔细推敲,就发现“怎么才能得到1;几个数,是几个什么样的数;“互为”如何理解呢?,在生活中有类似的思路可以迁移的事物吗?这些方面对学生清楚理解倒数的意义非常重要。

3、本课的着力点

基于对关键点的认真思考,发现“互为”一词比另两个关键点更难理解,难说的清楚。因此,必须在这个方面需要花功夫,下力气,因为理解这一关键点是学生掌握倒数意义的标志,也是帮助学生能识别“倒数”这一概念的方法之一。

4、本课的深化点(预设)

基于对倒数的意义的思考,发现定义中的“两个数”这一关键点的外延非常丰富,两个怎样的数呢?能不能 都是整数?能不能都是分数?能不能都是小数?……有没有特殊的数呢?比如整数都有倒数吗?小数都有倒数吗?分数都有倒数吗?因为整数中有0、1这样特殊的数,还有负整数。小数中有有限小数、无限小数、无限不循环小数。它们有没有倒数这样的情况 ……此处隐藏6487个字……数的倒数分三个层次教学:先求3/5、2/3等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。在第一个层次里,要求学生观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。第二个层次写出整数的倒数。可以从概念出发,寻找与这个整数相乘等于1的数。如果把整数看成分母是1的分数,就能像分数那样直接写出它的倒数。第三个层次理解0没有倒数,并要求作出相应的.解释。这是因为0和任何数相乘的积都是0,不存在与0相乘能够得到1的数。

倒数的意义就是一句话:乘积是1的两个数互为倒数。但是对于这句话的理解是有着比较丰富的内涵的,这也就是概念内涵的体现。这节课的教学流程分为这样几个基本块面:首先通过例题7提出的问题——给出倒数的含义——分层突击理解倒数含义——出示形式上的经典错例(特别是小数的倒数)——处理1和0的问题(这是本节课的难点)。

本文所谈的不是教学流程上的问题,而是通过倒数这个概念,谈一谈对概念教学的理解,从拆句的角度,乘积是1的两个数互为倒数拆为:乘积是1、两个数、互为倒数。

针对倒数这个概念,我认为:内涵是指向正例的,外延是指向反例的。比如:书上出示乘积是1的正例,我们需要出示商、和、差是1的反例;书上说的是两个数互为倒数,没有出示3个数的反例。这两个反例是针对倒数概念本身的。

学生在倒数的答案呈现上,习惯于用等号表示“的倒数是”这样的错误,比如2=1/2,从数学表达式上说这是非常明显的错误,学生确实犯了,而且每届都有这样的情况,在今年的教学中我已经强调并且纠正了这样的错误,这说明教学方式对于不同学生是不一样的,学生本身的理解和态度的端正与否也是重要的问题,需要引起重视。

本节课需要重视的第二个问题就是1和0的问题,这两个问题实际上牵涉到其他的概念:假分数、整数、自然数。假分数分为1和大于1的假分数;整数和自然数里都有0,在这个问题上需要处理好,学生的理解需要通过不同的方式来体现。

单独的概念教学,或者说倒数概念本身不是一个很复杂的问题,有关倒数的知识主要包括两点:一点是倒数的意义,另一点是求倒数的方法。学生建立倒数的概念以后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

相同的教学内容,几年的教学实践下来,发现:同样的教学内容,同样的知识点,为什么会出现这么大的差别?究其原因就是因为我们需要关注概念结构出现的次序,比如:整数的概念是复习、假分数的概念是辨析。

皮亚杰理论中认知发展的三个基本过程——同化、顺应、平衡,对于倒数概念来说,学生之前毫无经验,是属于顺应,其实顺应更类似一个质变的过程,有对于知识结构的扩展和修正,会形成一个新的认知图式。

但是本节课的教学难度不大,原因是这个知识点本身是不难的,从形式到本质,需要考虑的问题主要就是0,所以我在教学的时候特别关注了数字0的问题,然后在书本上39页第19题的处理上特别强调了数字1的问题。

从整个概念系统来说,同化和顺应是相互依存的,如:本节课中倒数的概念是顺应,而用到的外围概念是整数、自然数、假分数,我在学习的时候注重对概念本身的解读,数包括自然数和整数,倒数的形式是分数,但不是分数的整数和小数需要先转化为最简分数之后再处理。

在概念的形式实现之后的环节就是对倒数概念的辨析,如:题目a都有倒数,这句话本身是有问题的,但是我们关注的点应该是a这个数的取值范围,是取正整数?负整数?0?非正整数?非负整数?自然数?这里都是学生需要考虑的问题,其实有没有倒数的核心概念就是:0没有倒数,但是对于具体的表现形式是我们需要花时间去思量的问题。

《倒数的认识》数学教学反思12

教材中《倒数的认识》这一节课的内容不多,首先是用两个数的乘积是1这样的几个算式来引出倒数的概念,然后观察互为倒数的两个数,它们分子、分母的位置发生了什么变化?来总结出:求一个分数的倒数时,只要把这个分数的分子、分母调换位置就可以了。进而对一些特殊的数求倒数,比如整数的倒数(1的倒数,0有倒数吗?)。最后进行课堂练习,在练习中巩固求一个数的倒数,并且总结出:

(1)真分数的倒数都是大于1的假分数;

(2)大于1的假分数的倒数都是真分数;

(3)分数单位的倒数都是自然数;

(4)非零整数的倒数都是几分之一。

以上的'教学过程上课之前我认为还是比较合理的,认为《倒数的认识》这一节课主要是为以后分数的除法做准备的,然而学生对这节课的掌握效果超出了我预期的准备。一节40分钟的课,在20多分钟时学生已将上面的内容全部进行完成,而且掌握的效果还是很不错的,由于课前没有做好充分的准备,自己也是第一次教六年级,在题型的积累上很欠缺,使得在后面10多分钟的时间里只进行相同类型的练习就结束了这节课。

在课后我进行了很长时间的反思,如果仅仅这样教这节课,那么浪费的时间太多了,虽然教材中这节课的内容就这么多,但是在考试中倒数知识方面的题却是很多形式,单凭上面老师教的东西学生来完成还是比较吃力的,有些题必须是老师引导才能完成的。所以说,如果在当初的新授课中我将这些题型进行渗透,那么,在以后的练习中、考试中学生就能很轻松的自己来完成,我也不用将它作为一个新知识点来讲而又花费时间。在课后的我进行了搜集和整理,将与倒数的知识有关的题型全部整理出来,然后有进行了筛选,选择一些难易适中的题添补到这节课中来,题不能太难,因为毕竟这是一节新课,要考虑到学生的消化能力,但题必须有拓展性,对于以后的稍难的题一部分学生还是可以根据前面的知识有能力完成的,而对于差一点的学生也不至于遇到这样的题而无从下手。所以在选题上我比较慎重,题太难学生学习没有积极性,会认为数学学习高不可攀,享受不到学习时收获的快乐。

《倒数的认识》数学教学反思13

《倒数的认识》是在学生掌握了分数乘法的基础上教学的。在这节课中,我抓住了两大主要内容展开教学:1、学习理解倒数的意义。2、学习求一个数的倒数的方法。我以玩文字游戏导入新课,吸引学生的注意力,同时给学生灌输“倒”的想法,把游戏的`现象融入到数学当中。在理解倒数的意义时,让学生抓住关键的词语“乘积、互为”来理解,并强调倒数不是孤立的,而是对于两个数来说的。有了文字游戏的导入,学生观察到了互为倒数的两个数分子、分母的位置发生了倒换了,对求真分数和假分数的倒数容易掌握了,因而课堂的氛围很浓,积极踊跃回答问题的同学很多。但对自然数的倒数以及小数、带分数的倒数,大部分学生的思维一下子还转不过弯了,只有极少数的学生能够说出方法。对于特殊的数1和0,学生基本上能够知道他们的倒数。

这节课需要改进的地方是:求一个数的倒数还有另外一个方法就是一个数乘以另一个数,乘积是1,那另一个数就是这个数的倒数。如5×( )=1,括号里的数就是5的倒数。这个方法在这节课中,我没有明显强调出来,还不能让学生真正去理解倒数的意义。因此,知识与技能方面的目标还不能完成达到。

《《倒数的认识》数学教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式